<source id="kx6w7"><track id="kx6w7"></track></source>
    <b id="kx6w7"></b>
    1. 
      

    2. 《24.2直線與圓的位置關系》課堂教學反思

      教學反思 時間:2019-10-01 我要投稿
      【www.099su.com - 教學反思】

        本節課研究圓與圓的位置關系,重點是研究兩圓位置關系的判斷方法,并應用這些方法解決有關的實際問題。《圓與圓的位置關系》在舊教材中比重不大,但是在新課標中,被作為一個獨立的章節,說明新課標對這一章節的要求已經有所提高。教材是在初中平面幾何對圓與圓的位置關系的初步分析的基礎上得到圓與圓的位置關系的判斷方法,北師大版教材中著重強調了根據圓心到直線的距離與圓的半徑的關系進行判斷,對用方程的思想去處理位置關系沒作要求,但用方程的思想來解決幾何問題是解析幾何的精髓,是平面幾何問題的深化,它將是以后處理圓錐曲線的基本方法,因此,我增加了用方程的思想來分析位置關系,這樣有利于培養學生數形結合、經歷幾何問題代數化等解析幾何思想方法及辯證思維能力,其基本思維方法和解決問題的技巧在今后整個圓錐曲線的學習中有著非常重要的意義。

        作為解析幾何的一堂課,判斷圓與圓的位置關系,體現的正是解析幾何的思想:用方程處理幾何問題,用幾何方法研究方程性質。所以我在教材處理上,對判斷兩圓位置關系用了方程的思想和幾何兩種方法,兩種方法貫穿始終,使學生對解析幾何的本質有所了解。

        下面是我在設計這堂課時的一些想法。

        第一,學生學習新知識必須在已有知識和經驗的基礎上自主建構與形成。所以,我一開始便提出了三個問題,即復習此節相關的知識點,通過問題解決,以舊引新,提出新的問題,以類比的方法研究圓與圓的位置關系。配合幾何畫板的動畫演示,啟發學生思考當初是怎樣研究判斷直線與圓的位置關系的方法?這種方法是不是同樣可以運用到研究圓與圓的位置關系上來?能不能用來判斷圓與圓的位置關系?使學生很自然地從直線與圓的位置關系的判斷方法類比到圓與圓的位置關系的判斷方法。

        第二,新的課程標準非常重視學生的自主探究,這是學習方式的一次革命,老師的教授過程固然重要,但學生對知識的掌握是在學生自己對知識有體驗、有獨立的思考和探討的基礎上,才能成為可能。所謂“學在講之前,講在關鍵處”,學生先有一個對知識的認識過程,老師再在關鍵處進行講解,使學生真正完成對知識感知、形成和鞏固的過程,才是對知識最好的吸收。

        第三,學生的學習是在教師引導下的有目的的學習,從而教學的過程就是在教師控制下的學生自主學習和合作探究學習的過程,這個過程中的關鍵點是怎么樣有效地控制學生自主學習和合作探究學習的時間和空間,在教學的過程中,我較好地處理了學生學習的空間與時間,既留給學生充分思考與探索的時間與空間,又嚴格限定時間,由此培養學生思維的敏捷性,提高課堂效率。

        第四,把解決問題的步驟算法化,提前介入算法的思想,有利于后續學習,也有利于學生理清解決問題的思路和規范解決問題的程序。

        對于問題探究的題型選擇的一些思考:第一個問題研究,側重點之一是必須注意到相切的兩種位置關系:內切與外切;側重點之二在于如何找到這兩個圓的圓心,是為了讓學生回顧兩相切圓心與切點在同一直線上這一條性質,由此得到圓心坐標。第二個問題研究是研究一個半徑變化的圓與定圓相切,求題中參數變化的問題,這道題中同樣要注意的是相切的兩種情況,并且對于內切,要充分結合數形結合的思想,判斷出兩圓的半徑大小關系。兩題都有一定難度,處理時必須牢牢掌握知識,靈活運用。

        上完這堂課有幾個值得反思的問題:

        1、設計思路。

        我在開始思考設計這個課題時,并不是很有把握。圓與圓的位置關系在教材中不如之前直線與圓位置關系的應用性廣,有關它的題型受教學要求的局限,使教學設計增加了難度,但是運用已學的直線與圓的位置關系,用類比的方法去處理圓與圓的位置關系又是一個很好的材料,所以我采用了類比的思想,讓學生自主探討出圓與圓位置關系的判斷方法,這也比再次獨立研究圓與圓位置關系大大地縮短了時間,為后面節省了時間,這種思路是否可行?

        2、時間把握。

        課前復習是有必要的,是為了學生類比舊知識,聯想新知識,但復習舊知識的時間應該限定在三分鐘以內,復習時間長會導致鞏固練習的時間不足和問題展開不夠充分。

        3、限時訓練。

        限時訓練的目的是為了讓學生更有效率地做題,限定時間過長或是過短都不利于學生提高數學能力,這點還有待研究。

      空姐艳照